Saturday, 20 August 2011

History


The sizable Roman Harbaqa Dam in Syria is 21 m (69 ft) high and 365 m (1,198 ft) long.
The Roman dam at Cornalvo in Spain has been in use for almost two millennia.
Grand Anicut dam on river Kaveri in Tamil Nadu, South India (19th century on 1st-2nd century foundation)
The word dam can be traced back to Middle English,[1] and before that, from Middle Dutch, as seen in the names of many old cities.[2] Early dam building took place in Mesopotamia and the Middle East. Dams were used to control the water level, for Mesopotamia's weather affected the Tigris and Euphrates rivers, and could be quite unpredictable.
The earliest known dam is the Jawa Dam in Jordan, 100 kilometres (62 mi) northeast of the capital Amman. This gravity dam featured a 4.5 m (15 ft) high and 1 m (3 ft 3 in) wide stone wall, supported by a 50 m (160 ft) wide earth rampart. The structure is dated to 3000 BC. The Ancient Egyptian Sadd-el-Kafara Dam at Wadi Al-Garawi, located about 25 km (16 mi) south of Cairo, was 102 m (335 ft) long at its base and 87 m (285 ft) wide. The structure was built around 2800[5] or 2600 B.C.[6] as a diversion dam for flood control, but was destroyed by heavy rain during construction or shortly afterwardsBy the mid-late third century BC, an intricate water-management system within Dholavira in modern day India, was built. The system included 16 reservoirs, dams and various channels for collecting water and storing it.[7]
Roman dam construction was characterized by "the Romans' ability to plan and organize engineering construction on a grand scale".[8] Roman planners introduced the then novel concept of large reservoir dams which could secure a permanent water supply for urban settlements also over the dry season.[9] Their pioneering use of water-proof hydraulic mortar and particularly Roman concrete allowed for much larger dam structures than previously built,[8] such as the Lake Homs Dam, possibly the largest water barrier to that date,[10] and the Harbaqa Dam, both in Roman Syria. The highest Roman dam was the Subiaco Dam near Rome; its record height of 50 m (160 ft) remained unsurpassed until its accidental destruction in 1305.[11]
Roman engineers made routine use of ancient standard designs like embankment dams and masonry gravity dams.[12] Apart from that, they displayed a high degree of inventiveness, introducing most of the other basic dam designs which had been unknown until then. These include arch-gravity dams,[13] arch dams,[14] buttress dams[15] and multiple arch buttress dams,[16] all of which were known and employed by the 2nd century AD (see List of Roman dams). Roman workforces also were the first to build dam bridges, such as the Bridge of Valerian in Iran.[17]
Eflatun Pınar is a Hittite dam and spring temple near Konya, Turkey. It's thought to be from the time of the Hittite empire between the 15th and 13 century BC.
The Kallanai is constructed of unhewn stone, over 300 m (980 ft) long, 4.5 m (15 ft) high and 20 m (66 ft) wide, across the main stream of the Kaveri river in Tamil Nadu, South India. The basic structure dates to the 1st century AD.[18] and is considered one of the oldest water-diversion or water-regulator structures in the world, which is still in use.[19] The purpose of the dam was to divert the waters of the Kaveri across the fertile Delta region for irrigation via canals.It is considered to be the oldest dam still in use.
Posted by Shahid Yasin at 22:34 | 0 comments  
Labels:

Types of dams


Dams can be formed by human agency, natural causes, or even by the intervention of wildlife such as beavers. Man-made dams are typically classified according to their size (height), intended purpose or structure.

By structure

Based on structure and material used, dams are classified as timber dams, arch-gravity dams, embankment dams or masonry dams, with several subtypes.

Arch dams

Gordon Dam, Tasmania is an arch dam.
In the arch dam, stability is obtained by a combination of arch and gravity action. If the upstream face is vertical the entire weight of the dam must be carried to the foundation by gravity, while the distribution of the normal hydrostatic pressure between vertical cantilever and arch action will depend upon the stiffness of the dam in a vertical and horizontal direction. When the upstream face is sloped the distribution is more complicated. The normal component of the weight of the arch ring may be taken by the arch action, while the normal hydrostatic pressure will be distributed as described above. For this type of dam, firm reliable supports at the abutments (either buttress or canyon side wall) are more important. The most desirable place for an arch dam is a narrow canyon with steep side walls composed of sound rock.[27] The safety of an arch dam is dependent on the strength of the side wall abutments, hence not only should the arch be well seated on the side walls but also the character of the rock should be carefully inspected.
Daniel-Johnson Dam, Quebec, is a multiple-arch buttress dam.
Two types of single-arch dams are in use, namely the constant-angle and the constant-radius dam. The constant-radius type employs the same face radius at all elevations of the dam, which means that as the channel grows narrower towards the bottom of the dam the central angle subtended by the face of the dam becomes smaller. Jones Falls Dam, in Canada, is a constant radius dam. In a constant-angle dam, also known as a variable radius dam, this subtended angle is kept a constant and the variation in distance between the abutments at various levels are taken care of by varying the radii. Constant-radius dams are much less common than constant-angle dams. Parker Dam is a constant-angle arch dam.
A similar type is the double-curvature or thin-shell dam. Wildhorse Dam near Mountain City, Nevada in the United States is an example of the type. This method of construction minimizes the amount of concrete necessary for construction but transmits large loads to the foundation and abutments. The appearance is similar to a single-arch dam but with a distinct vertical curvature to it as well lending it the vague appearance of a concave lens as viewed from downstream.
The multiple-arch dam consists of a number of single-arch dams with concrete buttresses as the supporting abutments, as for example the Daniel-Johnson Dam, Québec, Canada. The multiple-arch dam does not require as many buttresses as the hollow gravity type, but requires good rock foundation because the buttress loads are heavy.
Posted by Shahid Yasin at 22:30 | 0 comments  
Labels:

Construction elements


Power generation plant

Hydraulic turbine and electrical generator.
As of 2005, hydroelectric power, mostly from dams, supplies some 19% of the world's electricity, and over 63% of renewable energy.[36] Much of this is generated by large dams, although China uses small scale hydro generation on a wide scale and is responsible for about 50% of world use of this type of power.[36]
Most hydroelectric power comes from the potential energy of dammed water driving a water turbine and generator; to boost the power generation capabilities of a dam, the water may be run through a large pipe called a penstock before the turbine. A variant on this simple model uses pumped storage hydroelectricity to produce electricity to match periods of high and low demand, by moving water between reservoirs at different elevations. At times of low electrical demand, excess generation capacity is used to pump water into the higher reservoir. When there is higher demand, water is released back into the lower reservoir through a turbine. (For example see Dinorwic Power Station.)
Hydroelectric dam in cross section.

Spillways

Spillway on Llyn Brianne dam, Wales soon after first fill.
A spillway is a section of a dam designed to pass water from the upstream side of a dam to the downstream side. Many spillways have floodgates designed to control the flow through the spillway. Types of spillway include: A service spillway or primary spillway passes normal flow. An auxiliary spillway releases flow in excess of the capacity of the service spillway. An emergency spillway is designed for extreme conditions, such as a serious malfunction of the service spillway. A fuse plug spillway is a low embankment designed to be over topped and washed away in the event of a large flood. Fusegate elements are independent free-standing block set side by side on the spillway which work without any remote control. They allow to increase the normal pool of the dam without compromising the security of the dam because they are designed to be gradually evacuated for exceptional events. They work as fixed weir most of the time allowing overspilling for the common floods.
The spillway can be gradually eroded by water flow, including cavitation or turbulence of the water flowing over the spillway, leading to its failure. It was the inadequate design of the spillway which led to the 1889 over-topping of the South Fork Dam in Johnstown, Pennsylvania, resulting in the infamous Johnstown Flood (the "great flood of 1889").
Erosion rates are often monitored, and the risk is ordinarily minimized, by shaping the downstream face of the spillway into a curve that minimizes turbulent flow, such as an ogee curve.
Posted by Shahid Yasin at 22:28 | 0 comments  
Labels:

Impact assessment

 

Impact is assessed in several ways: the benefits to human society arising from the dam (agriculture, water, damage prevention and power), harm or benefits to nature and wildlife (especially fish and rare species), impact on the geology of an area - whether the change to water flow and levels will increase or decrease stability, and the disruption to human lives (relocation, loss of archeological or cultural matters underwater).

Environmental impact

Wood and garbage accumulated because of a dam
Reservoirs held behind dams affect many ecological aspects of a river. Rivers topography and dynamics depend on a wide range of flows whilst rivers below dams often experience long periods of very stable flow conditions or saw tooth flow patterns caused by releases followed by no releases. Water releases from a reservoir including that exiting a turbine usually contains very little suspended sediment, and this in turn can lead to scouring of river beds and loss of riverbanks; for example, the daily cyclic flow variation caused by the Glen Canyon Dam was a contributor to sand bar erosion.
Older dams often lack a fish ladder, which keeps many fish from moving up stream to their natural breeding grounds, causing failure of breeding cycles or blocking of migration paths.[40] Even the presence of a fish ladder does not always prevent a reduction in fish reaching the spawning grounds upstream. In some areas, young fish ("smolt") are transported downstream by barge during parts of the year. Turbine and power-plant designs that have a lower impact upon aquatic life are an active area of research.
A large dam can cause the loss of entire ecospheres, including endangered and undiscovered species in the area, and the replacement of the original environment by a new inland lake.
Large reservoirs formed behind dams have been indicated in the contribution of seismic activity, due to changes in water load and/or the height of the water table.

Human social impact

The impact on human society is also significant. Nick Cullather argues in Hungry World: America's Cold War Battle Against Poverty in Asia that dam construction requires the state to displace individual people in the name of the common good, and that it often leads to abuses of the masses by planners. He cites Morarji Desai, Interior Minister of India, in 1960 speaking to villagers upset about the Pong Dam, who threatened to "release the waters" and drown the villagers if they did not cooperate.[41]
For example, the Three Gorges Dam on the Yangtze River in China is more than five times the size of the Hoover Dam (U.S.), and will create a reservoir 600 km long to be used for hydro-power generation. Its construction required the loss of over a million people's homes and their mass relocation, the loss of many valuable archaeological and cultural sites, as well as significant ecological change.[42] It is estimated that to date, 40-80 million people worldwide have been physically displaced from their homes as a result of dam construction.[43]

Economics

Construction of a hydroelectric plant requires a long lead-time for site studies, hydrological studies, and environmental impact assessment, and are large scale projects by comparison to traditional power generation based upon fossil fuels. The number of sites that can be economically developed for hydroelectric production is limited; new sites tend to be far from population centers and usually require extensive power transmission lines. Hydroelectric generation can be vulnerable to major changes in the climate, including variation of rainfall, ground and surface water levels, and glacial melt, causing additional expenditure for the extra capacity to ensure sufficient power is available in low water years.
Once completed, if it is well designed and maintained, a hydroelectric power source is usually comparatively cheap and reliable. It has no fuel and low escape risk, and as an alternative energy source it is cheaper than both nuclear and wind power.[citation needed] It is more easily regulated to store water as needed and generate high power levels on demand compared to wind power, although dams have life expectancies while renewable energies do not.
Posted by Shahid Yasin at 22:25 | 0 comments  
Labels:

Dam failure


The reservoir emptying through the failed Teton Dam.
International special sign for works and installations containing dangerous forces
Dam failures are generally catastrophic if the structure is breached or significantly damaged. Routine deformation monitoring and monitoring of seepage from drains in and around larger dams is useful to anticipate any problems and permit remedial action to be taken before structural failure occurs. Most dams incorporate mechanisms to permit the reservoir to be lowered or even drained in the event of such problems. Another solution can be rock grouting - pressure pumping portland cement slurry into weak fractured rock.
During an armed conflict, a dam is to be considered as an "installation containing dangerous forces" due to the massive impact of a possible destruction on the civilian population and the environment. As such, it is protected by the rules of International Humanitarian Law (IHL) and shall not be made the object of attack if that may cause severe losses among the civilian population. To facilitate the identification, a protective sign consisting of three bright orange circles placed on the same axis is defined by the rules of IHL.
The main causes of dam failure include inadequate spillway capacity, piping through the embankment, foundation or abutments, spillway design error (South Fork Dam), geological instability caused by changes to water levels during filling or poor surveying (Vajont Dam, Malpasset, Testalinden Creek Dam), poor maintenance, especially of outlet pipes (Lawn Lake Dam, Val di Stava Dam collapse), extreme rainfall (Shakidor Dam), and human, computer or design error (Buffalo Creek Flood, Dale Dike Reservoir, Taum Sauk pumped storage plant).
A notable case of deliberate dam failure (prior to the above ruling) was the Royal Air Force 'Dambusters' raid on Germany in World War II (codenamed "Operation Chastise"), in which three German dams were selected to be breached in order to have an impact on German infrastructure and manufacturing and power capabilities deriving from the Ruhr and Eder rivers. This raid later became the basis for several films.
Since 2007, the Dutch IJkdijk foundation is developing, with an open innovation model and early warning system for levee/dike failures. As a part of the development effort, full scale dikes are destroyed in the IJkdijk fieldlab. The destruction process is monitored by sensor networks from an international group of companies and scientific institutions.
Posted by Shahid Yasin at 22:23 | 0 comments  
Labels:
Subscribe to: Comments (Atom)